Chapter 8

Orbital Angular Momentum

Orbital angular momentum is maybe the most intuitive form of angular momentum. In
this Chapter we will study the properties of orbital angular momentum, using the general
theory we have developed in the previous Chapter.

8.1 The Orbital Angular Momentum Operator

(Classically, orbital angular momentum is defined as
L=rxp. (8.1.1)

In the quantum mechanical setting, we can use the correspondence principle to find the
operator equivalent of Eq. (8.1.1). This is achieved promoting dynamical variables to
operators r = (z,y,2) — © = (2,9, 2), and similarly for the momentum operator, p =
(Pzs Dy, P2) = D = (Pu, Py, P»). The components of the orbital angular momentum operator

A

L= (L., ﬁy, f/z) can be found by using the following fact
(5: X g)l = Zeijkajbk, (812)
ik

where €;;; is the Levi-Civita tensor. Using Eq. (8.1.2) for the orbital angular momentum,
we find . R A

Lx = gpz - 2ﬁy: Ly = 2ﬁ:}c - 5?3]32, Lz = i’ﬁy - @ﬁx (813)
We can then compute explicitly commutators between different components of the orbital
angular momentum, just using the fundamental commutation relations between positions
and momenta. We provide an example with the z and y components of the orbital angular

momentum operator,

(Lo, Ly) = [9p= — 2Py, 2D — 2p2] =
= (0D, 2D2) — [9D=, 2P=) — [2Dy, 2D:] + [2Dy, £D.]
= 0Pz [P, 2] + TPy[2,P.] =
= ih(—=Jp. + 2py,) =
— kL, . (8.1.4)
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In general, we can show that the components of L obey the following commutation
relations o X

[Li, LJ] = Zhekak 5 (815)
where the indices 1, 7, k take the values x,y,z. Thus, the orbital angular momentum
operator satisfies the same commutation relations we expect from a general angular
momentum operator.

Exercise 1.1 Using the commutation relations between the position and momentum
operators, show Eq. (8.1.5).

8.2 The Rotation Operator

By explicitly computing the commutator relations of the components of the orbital angular
momentum, we have shown that L satisfies the properties of a rotation operator. We
haven’t explicitly shown however what kind of rotations this operator performs. We will
now show that L is associated to rotations of the coordinate system. Let us consider for
example a rotation by an angle 6, around the z direction, such that the rotation vector
reads @ = (0,0,6,). At the beginning of the previous Chapter, we have recalled that
real-space rotations along a certain direction are fully encoded by 3 x 3 matrices. For the
case of rotations along the z axis, we have that this matrix takes the explicit form:

A cosf, —sinf, 0
R(O) = | sinf, cosf, 0] . (8.2.1)
0 0 1

This matrix acts on coordinates, thus we can write rotated eigen-kets of the position
operator as

A

Ity = R(0) |r) = |cosf, x —sinf, y,sinb, x + cos by, z) , (8.2.2)

which in the limit of a small rotation angle becomes

A

Ir(60)) = R(d0) |r) = |z — 0, y,y + 0, x, z) , (8.2.3)
thus the amplitudes of a quantum state in this rotated frame read:

(r(00)|y) = (x — 00, y,y + 00, z, 2)

=(r) + 60, <_y3@§ir) + x&g;r)) +.

(8.2.4)

Now, we would like to compare this expression to what we would obtain considering the
rotation operator defined in terms of the orbital angular momentum:

D(6) = ¢ 50 (8.2.5)
The action of the rotation operator on a basis ket is:

¥(6)) = D(B) |r) = e P

r) (8.2.6)
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thus the amplitudes of a given quantum state in this basis (rotated by D) are:

(X (O)[0) = (xle"F*|u) (8:27)
Notice that the expression for the amplitudes above can be interpreted in two equivalent
ways: either we rotate the basis eigen-kets [r'(0)) = D(8)|r) and keep the state |¢))
unchanged, or we keep the basis eigen-kets unchanged and rotate the state in the opposite
direction, thus |1)) — Di(—8) |)) = D(8)|¢)). In the limit of small angle, the rotation
operator D(40) defined in terms of the z component on the angular momentum reads:

o0 _ f 4 %5@; ¥
S %66,2(:%13?, — Gpa) + ...
— [ 4 060.(20, — 90y) + ... . (8.2.8)
thus

(r'(50)[0) = (x]e! % [))
(r) +x81/1(r)> : (8.2.9)

= o)+ 68, (s 250 4 o2

which is identical to the expression found using the rotation matrix, also implying that
It'(00)) = |r(60)). We therefore identified rotations of the coordinate system along the
z axis with the action of the operator D(6) with 8 = (0,0,6.) and the orbital angular
momentum f/z

Exercise 1.2 Show, by following a very similar procedure, that the L, and ﬁy generate
rotations in their respective directions by an angle ¢, and 6, respectively.

8.3 The Representation in Spherical Coordinates

In order to analyze the eigenfunctions of the orbital angular momentum, it is much more
convenient to consider the representation of L in spherical coordinates (r, 6, ¢), rather than
cartesian ones (z,y, z). There are several possible conventions for spherical coordinates;
here we adopt the following definition:

xr=rsinfcos¢p, y=rsinfsing, z=rcosh. (8.3.1)

We can then express the three components of the angular momentum operator in this
system. To this end, it is necessary to consider the form of the gradient operator in
spherical coordinates. Consider for example derivatives with respect to the angle ¢, which
controls rotations around the z axis.

0 Odx 0 Oyod  0z0

06 d60r 060y  060:

= —rsin&s.in(b2 +rsin9603¢2 =
ox Jy

L (8.3.2)
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On the other hand, we can immediately connect this result to the representation of L, in
cartesian coordinates

. 0 0 0

L,=2%p, —Up, = —th|T— —§J— | = —th—. 8.3.3
The z component of the orbital angular momentum has therefore a very simple
expression in terms of gradients with respect to the azimuthal angle, and, in this
coordinate system, it closely resembles the action of a linear momentum operator.

Deriving the other components is a straightforward, yet laborious extension of what we
have already seen for the z component. The first step is to consider the gradients in polar
coordinates as linear combinations of gradients in cartesian coordinates, differentiating
Eq. (8.3.1) we have:

) Oz Oz Oz 9
o or 290 06\ [
=2 2 2|2 (8.3.4)
Y o9 o\
9 or 90 0] \oz
sin 6 cos ¢ sin # sin ¢ cos 6 %
= | rcosfcos¢ rcosfsing —rsinf| |5 |. (8.3.5)
—rsinfsing rsinfcos ¢ 0 é

The second step is to consider the inverse transformation, so to express the cartesian
derivatives as a linear combination of the spherical derivatives. This is obtained inverting
the 3 x 3 (Jacobian) matrix above, and, after a lengthy and heartless calculation we omit
here, we have:

Kl . cosfcos¢p  sing a9
%T Sl-n f C9S ¢ cos 9rsin ) cggié)l 0 %"
o | = sin @ sin ¢ T reme |- (8.3.6)
% cos 6 —== 0 9

The third and final step is to express the z and y components of the orbital angular
momentum in terms of these derivatives, finding

f/z = Up. — ZPy

. : . 0 sinf 0
_—zhrsmﬁangzﬁ(cos@ar— . 89)
- . ., 0 cosfsing 0 cos¢p 0
—i—zhrcos@(sm@smgzﬁar—i- %—i_rsinec’)qﬁ

— ih(sin d)aae 4 cot 6 cos (b&a(ﬁ)’

for the x component. With a very similar treatment, we find for the y component

L,= —ih(cos ¢8@0 — cot 6 sin (b@agzﬁ) (8.3.7)
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With these definitions, we can also find explicitly expressions for the ladder operators

T w0 . 0
Ly=1L,+il, = +he* (ae + i cot 9(%> : (8.3.8)

Similarly, using the definition of L? in terms of the ladder operators:

A ~ 1/~ =« A
=1+ (LyL-+L-Ly), (8.3.9)

and after another lengthy calculation we omit here one gets

2
ﬁ2:—h2[ L 9 + L 9 (mea)}. (8.3.10)

sin20 9¢? ' sinf 90

Exercise 1.3 Derive the expression of Eq. (8.3.10).

8.4 The Eigenfunctions in the Spherical Coordinates
Representation

Armed with the representation of the orbital angular momentum in spherical coordinates,
we are now ready to study its eigenstates. As done for the general theory of angular
momentum, we consider again common eigenstates of L, and L2, such that

L2, m) = R2(1+ 1)|1,m) (8.4.1)
L. |l,m) = km|l,m)

As we have seen from their explicit expressions, both operators depend only on the angles
0 and ¢ and are completely independent on the radial component r. This implies that
also the eigenstates, in polar coordinates, will have a factorized form. At fixed values
of [ and m, the eigenstates of the orbital angular momentum are then the product of a
function of 6 and ¢ times a radial function. They are conventionally written as:

(r|l,m) = @' (r)Y!(0,9), (8.4.3)

where ®! (r) is a radial function and the functions Y! (6, ¢), encoding the angular part, are
called spherical harmonics. The normalization condition that the eigenfunctions satisfy
is, in general,

(Lmlt,m) = [ arlel, ()P0, 0)F (8.4.4)
~ (/OOO dr]@lm(r)]QrQ) x (/02 dqﬁ/oﬂ d@sin(&)\Yé(Q,gb)F) (8.4.5)
=N, X Ny (8.4.6)

=1. (8.4.7)
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Thus, taking the form of a product of two normalizations, one for the radial part, and one
for the angular part. The conventionally adopted choice, which is also quite convenient
for all calculations, is to take the two factors identically equal to 1, thus we require

/°° dr| @ ()22 = 1, (8.4.8)
0

for the radial part, and the normalization condition for the spherical harmonics is instead

21 s
/ dé / dfsin(8)|Y1 (8, )2 = 1. (8.4.9)
0 0

Notice that the radial function ®! (r) cannot be determined from the general eigenvalue
equations we have written above, and it is thus arbitrary, provided that the normalization
condition is verified. In the following, we will concentrate then only on the non-trivial
angular part, and study the properties of the spherical harmonics, as well as the associated
spectrum of eigenvalues [ and m.

8.4.1 Eigenvalues of L,

We start with the case of iz, for which the eigenvalue equation projected onto spherical
coordinates takes the form A
(r|L.|l,m) = hm(r|l,m). (8.4.10)

Recalling the representation of the L, operator in the spherical coordinates representation,

L, =—ili—, 8.4.11
ih5g (3.411)
we have that the spherical harmonics satisfy the following differential equation
il (1)Y4,(6.0) = B, (1)Y(6.0), (8.4.12)
thus we see that it is independent of the radial part,
o 0 !
_ZhaTme(Q’ ¢) = hmY,,(0,¢). (8.4.13)

Moreover, this equation does not carry any differential dependence on @, thus it is satisfied

by separation of variables .
Y (0,0) = xpu(0)e™?. (8.4.14)

From this expression we can also make a very important deduction on the possible values
taken by m and [. The general theory of the angular momentum tells us that m is either
integer or semi-integer and takes values in

—I<m<l (8.4.15)

However, for orbital angular momentum there is a little surprise! If we assume that
the eigenfunctions of the angular momentum are single-valued (an assumption which is



CHAPTER 8. ORBITAL ANGULAR MOMENTUM 7

essential if we wish to use these functions as a basis in which to expand arbitrary wave-
functions) we must have that

Y0, +2m) = YL(0,9), (8.4.16)

thus €™ = 1 and m must be an integer, ruling out the possibility of a semi-integer
value. In turn, this implies that [ itself is an integer, and the allowed eigenvalues are

m=—l,...,—3,-2,—-1,0,1,2,3,...,1. (8.4.17)

It should be remarked that this spectrum of eigenvalues is in stark contrast with what
happens for spins, that instead are allowed to take also semi-integer values of orbital
angular momentum and not only integer values. This also explains why the Stern and
Gerlach experiment was a “smoking-gun” (direct proof) for the existence of an intrinsic
angular momentum, the spin, of the electron as opposed to the orbital angular momentum.
The observation of an even number of possible values of m (m = £1/2, in the SG
experiment) indeed is not compatible with orbital angular momentum, that for any value
of [ allows only for an odd number of m states.

8.4.2 Eigenfunctions of 2
The other equation satisfied by the spherical harmonics is the eigenfunction condition for
L*

(0, 6| L?|1,m) = K21(1 + 1)(8, |1, m) (8.4.18)

and using the explicit form for L2 in spherical coordinates we get the following differential
equation:

1 02 1 9 0
———Y} — Y! Y, =0. 4.1
g 0.0+ o (0 6.0)) U DYEO0) =0, (8419
However, recalling that the ¢ dependence is fixed, we have:
aiyl 0, ¢) = im— 0 y1 L(0,0) = —m*YL(0,0) (8.4.20)
8¢2 m Y a¢ m ) ) M
thus we can completely remove the ¢ dependence, leading to:
sin QQ sin Qé L)) + {l(l +1)sin® 6 — mﬂ XL (0)=0. (8.4.21)
00 a0~ mn

This differential equation is equivalent to the associated Legendre equation, and its
solution is denoted P! (cosf) = x! (f) and can be found in many textbooks. Then,
apart from a normalization factor, we have:

Y0, ¢) oc e™ P! (cos®). (8.4.22)
The overall normalization can be found recalling the orthonormality conditions:

<la m|l,7 m/> = 5l,l’5m,m’ ) (8423)
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implying:
2 s ,
/ de / dOY! (0, 6) YL, (0, ) sin0d0dé = 60 (8.4.24)
0 0

This can be used to fix the overall normalization of the spherical harmonics. Furthermore,
it is customary in physics literature to take a phase convention such that the spherical
harmonics are complex-valued and satisfy:

YL, (0,0) = (=1)"Y,.(6,0)". (9.4.25)
Overall, these two conditions fix the final form to be:

(21 + 1)( — |m])!
(1 + [m])!

1/2
YL, p) = (—1)mtmD/2 l 1 ™ P! (cosf), (8.4.25)

where P! (cosf) are the associated Legendre functions.

We quote some of the first few spherical harmonics, that can be useful in exercises. The
lowest spherical harmonic is just a constant,

Y20, ¢) = JZ_W, (9.4.27)

then for [ = 1 we have

Y0, ¢) = :H/;;r sin e, Y (0, ¢) = \/4?; cosf, (8.4.26)

Y0, 0) = 1—(3 cos’0 — 1), (8.4.27)

and for [ =2

|
3

ot

1 .
Y2 (0,0) = Fy/ - sin @ cos fe*™? | (8.4.28)

/15 .
Y2 (0,6) = - sin? G2 (8.4.29)

Higher spherical harmonics can be found in books, if necessary.

Qo

8.4.3 Recursive Relations

An alternative approach to derive explicit expressions for x! () is based on the ladder
operators, similar to what we have already done for the harmonic oscillator. Specifically,
we know that for the maximum allowed value of m, (m = [) we must have

Lo|l,l) =0, (8.4.30)

thus
(1L 1) = heah (7 [ 2 4 icot02 ) o) =
’ N\ 00 oo ) X

= F (r,¢) (;X;(e) —lcot 9)(%(9)) =0. (8.4.31)
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We then have that the differential equation satisfied by x! is

<§9><§(9) — [ cot «9;4(9)) =0, (8.4.32)

which has solution
Xi(0) = cy(sin )", (8.4.33)

where ¢ is a normalization constant that can be determined imposing the normalization
condition. Omitting the explicit calculation of the normalization constant, the spherical
harmonic in this case reads:

Y0, ) = cue™(sin )" . (8.4.34)

The spherical harmonics for smaller values of m can then be found by repeated applications
of L_, since we know from the general theory of angular momentum that

L_|l,m)=C_(l,m)|l,m—1), (8.4.35)

with C_(I,m) = hy/I(l + 1) — m(m — 1). We then find:

Yo '(0,0) = M x e (;e — i cot e(%) Y6, ¢). (8.4.36)
Xom ' (0) = C_C(‘l% X (aa(,xin(@) + m cot 9%(9)) : (8.4.37)

The latter expression is a recursive relation that allows us to systematically compute all
the spherical harmonics, starting from the explicit expression we found for Y}!(6, ¢).

8.4.4 Properties of the Spherical Harmonics

While in the previous discussion we have only quoted the final result for the spherical
harmonics, since its derivation is not conceptually interesting beyond the mathematical
aspect, it is important though to know some general properties of the orbital angular
momentum eigenfunctions.

One important property is that spherical harmonics are orthonormal, which implies

/0 " 46 /O " 0sin(0)YL (0, 0)YL (8, 8)" = S (8.4.38)

and that all functions F'(0,¢) of the solid angles # and ¢ can be written as a linear
combination of these basis functions:

0o l
F(0,0)=>" > cmYnm(0,0), (8.4.39)
=0 m=-1
or in ket form
(0,0|F) = (¢,0]l,m)(l,m|F), (8.4.40)

m
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thus the coefficients ¢;,,, = (I, m|F") read

(1, m|F) = /O e /O " 0sin(0)YL (60, 6) F(8, 8). (8.4.41)

From the general expressions for the spherical harmonics, we can also immediately notice
that spherical harmonics with m = 0 are purely real. This results from the fact that the
normalization constant ¢; defined above has an arbitrary phase, which is traditionally
fixed in such a way that

YL (0,6) = (—=1)™YL(6, )" . (8.4.42)

Since the square modulus of the spherical harmonics does not depend on the angle ¢,
a useful way of plotting them is presented in Figure 8.1. From this Figure it can be
noticed that [ = 0 state, also known as "s state', is spherically symmetric, thus it has
no preferential angular direction. The [ = 1 states, known as "p states', instead have
different 6-dependent shapes. For [ = 1, m = 0 for example we can see that there are two
lobes, such that they have a zero in the xy plane.

8.5 References and Further Reading

The discussion in this Chapter shows the main conceptual steps required to construct the
spherical harmonics, but some more laborious (and less interesting) steps have not been
reproduced. Cohen-Tannoudji’s book contains, in Chapter 6, a thorough discussion of all
these technical aspects. The interested reader is then invited to look in there for more
details.
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L-- = —

I=2,m=0 I=2,m=+%1 [=2,m=12

Figure 8.1: Polar Plots of the Spherical Harmonics.
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